JAK2 V617F Genotype Is a Strong Determinant of Blast Transformation in Primary Myelofibrosis

نویسندگان

  • Giovanni Barosi
  • Valentina Poletto
  • Margherita Massa
  • Rita Campanelli
  • Laura Villani
  • Elisa Bonetti
  • Gianluca Viarengo
  • Paolo Catarsi
  • Catherine Klersy
  • Vittorio Rosti
چکیده

PURPOSE The influence of JAK2 V617F mutation on blast transformation (BT) and overall survival (OS) in primary myelofibrosis (PMF) is controversial. In a large cohort of patients we applied competing risks analysis for studying the influence of JAK2V617F mutation on BT in PMF. PATIENTS AND METHODS In 462 PMF-fibrotic type patients (bone marrow [BM] fibrosis grade >0) we computed the incidence of BT and death in the framework of Cox regression analysis and of Fine and Gray competing risks analysis for BT. RESULTS At the Cox regression analysis, having either a wild-type (wt) or a homozygous JAK2V617F genotype were factors for BT (HR, 1.98 and 2.04, respectively, with respect to the heterozygous genotype), but not for OS. At the competing risks regression analysis, the risk for BT in wt and homozygous V617F patients increased with respect to Cox analysis, giving a sHR of 2.17 and 2.12, respectively. Correcting the results for the variables that could have influence on BT, JAK2V617F wt and homozygous genotypes remained independently associated with BT. In a validation cohort of 133 independent cases with PMF-prefibrotic type (BM fibrosis grade = 0), the BT predictive model including JAK2V617F genotype and older age retained high discriminant capacity (C statistics, 0.70; 95% CI, 0.47 to 0.92). CONCLUSION The accumulation of mutated alleles in the JAK2V617F clone or the selective acquisition of a proliferative advantage in the wt clone are two relevant routes to BT in PMF. The influence of these results on treatment decisions with anti-JAK2 agents should be tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis.

Few investigators have evaluated the usefulness of the JAK2 V617F mutation for explaining the phenotypic variations and for predicting the risk of major clinical events in primary myelofibrosis (PMF). In a transversal survey we assayed by allele-specific polymerase chain reaction (PCR) the JAK2 V617F mutational status in 304 patients with PMF. Multiple DNA samples were collected prospectively f...

متن کامل

Megakaryocytic morphology and clinical parameters in essential thrombocythemia, polycythemia vera, and primary myelofibrosis with and without JAK2 V617F.

CONTEXT Megakaryocytes are the "hallmark" of Philadelphia chromosome-negative myeloproliferative neoplasms, such as essential thrombocythemia, polycythemia vera, and primary myelofibrosis; their morphology in correlation with Janus kinase 2 (JAK2 V617F) mutation as well as clinical and laboratory parameters remains unknown. OBJECTIVE To assess the morphology of megakaryocytes in bone marrow b...

متن کامل

The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis--impact on disease phenotype.

BACKGROUND AND OBJECTIVES The JAK2 V617F tyrosine kinase mutation is present in the great majority of patients with polycythemia vera (PV), and approximately half of the patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). The three distinct disease entities may be considered as three phenotypic presentations of the same JAK2 V617F positive chronic myeloproliferative di...

متن کامل

CD133 marks a stem cell population that drives human primary myelofibrosis.

Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133(+) stem cell population that drives th...

متن کامل

Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms.

In this study we investigated whether neoplastic transformation occurring in Philadelphia (Ph)-negative myeloproliferative neoplasms (MPNs) could involve also the endothelial cell compartment. We evaluated the level of endothelial colony-forming cells (E-CFCs) in 42 patients (15 with polycythemia vera, 12 with essential thrombocythemia, and 15 with primary myelofibrosis). All patients had 1 mol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013